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Abstract

We study the statistical properties of Ising spin chains with a finite (although
arbitrarily large) range of interaction among the elements. We examine
mesoscopic subsystems (fragments of an Ising chain) with lengths comparable
with the interaction range. The equivalence of the Ising chains and the multi-
step Markov sequences is used for calculating different non-additive statistical
quantities of the chain and its fragments. In particular, we study the variance
of the fluctuating magnetization of fragments, magnetization of the chain in
an external magnetic field, etc. Asymptotical expressions for the non-additive
energy and entropy of mesoscopic fragments are derived in the limiting cases
of weak and strong interactions.

PACS numbers: 05.40.−a, 02.50.Ga, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the basic postulates of traditional statistical physics is the assumption that the range of
particle interaction is small compared to the system size. If this condition does not hold, the
internal and free energy, entropy and other physical quantities are no longer additive. Due to
this fact, there are no straightforward definitions of the temperature, entropy, etc. The statistics
of systems with long-range interaction are not Gibbsian, Boltzman’s relationship between the
entropy and the statistical weight is no longer valid, and the fluctuations of sums of random
quantities do not obey the Gaussian statistics.

Systems with long-range interaction are common in physics [1]. Amongst them are
gravitating systems [2], electrically charged systems [3], magnets with dipolar interactions
[4], etc. An important physical example of such a class of systems is an Ising spin chain with
long-range interaction (see, e.g., [5]).

1751-8113/09/095004+14$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/9/095004
mailto:usatenko@ire.kharkov.ua
http://stacks.iop.org/JPhysA/42/095004


J. Phys. A: Math. Theor. 42 (2009) 095004 S S Apostolov et al

The long-range interaction leads to correlations among the elements of the system,
which is the reason for the appearance of non-Gaussian statistics. Such non-Gaussian
distributions (induced by long-range correlations) are found in various fields of science, e.g. in
linguistics (distribution of ‘words’ in a given text [6–8]), biology (distribution of nucleotides
in DNA sequences [9]), computer science (forward error correction codes [10]), economics
(distributions in financial markets [11]), sociology, physiology, seismology.

One of the most interesting phenomena in long-range correlated systems is the
phenomenon of phase transition. The existence of phase transitions is of great importance
for different sciences, for example biology in the problem of DNA melting [12, 13]. Dyson
[14], Ruelle [15] and Thouless [16] found different conditions for the existence of the phase
transition in the Ising chain with an infinite scale of interaction.

The usual objects for studying the effects of long-range correlations are the non-extensive
thermodynamic systems [17] where both the interaction range and the system length are
macroscopically large. However, the mesoscopic long-range correlated systems, which are not
large enough to consider the thermodynamic limit, have not been studied thoroughly. The
statistical properties of such systems are very similar to the properties of the infinite non-
extensive thermodynamic systems. In the present paper, we consider the finite-size subsystems
(fragments) of an infinite Ising chain as examples of mesoscopic correlated systems. We study
the Ising chain with the Hamiltonian

H = −
∑

0<j−i<N

ε(j − i)sisj − H
∑

i

si , (1)

where the spin variable si takes on two values, −1 and 1, ε(r) > 0 is the exchange integral
of the ferromagnetic coupling and H is the external magnetic field. Below, for simplicity,
we assume ε(r) = 0 for r > N . The range N of spin interaction is finite although arbitrary.
The chain is assumed to be in thermodynamical equilibrium with a Gibbs thermostat of
temperature T (unless otherwise mentioned). Such a system is obviously an extensive
one, and the usual thermodynamics can be applied to the system as a whole. There is no
spontaneous magnetization in such a chain due to the finiteness of the particle interaction
range. Nevertheless, its mesoscopic subsystems are of interest because of their non-additive
statistical properties. The aim of our work is to calculate different statistical quantities for a
mesoscopic subsystem of length L, which can be of the order of the interaction length N.

Thus, we study an Ising chain with a finite range of interaction, but the lengths of the
subsystems are also finite. We show that the energy and entropy of the fragments of the
Ising chain are non-additive quantities. We calculate the root-mean-square (RMS) value
of the fluctuation of the magnetization which does not scale as

√
L (the number of spins

in a fragment), unlike the case of short-range interactions. We suggest a way to calculate
statistical quantities for finite subsystems in contact with both the external Gibbs thermal bath
of temperature T and the rest of the Ising chain playing the role of an additional thermostat.

For mesoscopic systems, an important problem is to introduce an appropriate statistical
ensemble correctly, because different statistical ensembles are not equivalent for such systems
(see, e.g., [18]). These canonical ensembles are equivalent in the thermodynamical limit only.
In the present paper, we deal with an ensemble of the finite subsystems that are parts of an
infinite Ising chain.

We calculate the statistical properties of the Ising chains using their equivalence with the
binary N-step Markov chains. The multi-step Markov chain is the sequence where symbols,
say ±1, are generated by means of the following procedure. One starts from arbitrary N
symbols; then the subsequent symbols are generated with the probability that depends on the
values of the preceding N symbols only and is independent of further symbols:
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P
(
si = s

∣∣T −
i,∞

) = P
(
si = s

∣∣T −
i,N

)
. (2)

Here, T −
i,L is a set of L sequential symbols (si−L, si−L+1, . . . , si−1). The statistical properties

of such chains were studied in detail in [7, 19–23].
The statistical equivalence of the Ising and Markov chains is widely known (see, e.g.,

[24, 25]). However, these references define Markov chains not via the ‘one-sided’ conditional
probability function (2), depending on the values of the preceding symbols, but rather via the
‘two-sided’ one. The definition of the chain with a one-sided conditional probability function
is more convenient for numerical simulations of the chain as well as for obtaining analytic
results. Apostolov et al [26] demonstrated the equivalence of the two views mentioned on
Markov chains.

The paper is organized as follows. In section 2, we show how to find a Markov chain
corresponding to the Ising chain under consideration. Using this correspondence rule, we
calculate the RMS value of the fluctuating part of magnetization for the chain fragments of
length L in the absence of a magnetic field. We also find magnetization of the chain in the
presence of the magnetic field. Section 3 introduces a method for calculating the statistical
quantities of the fragments of the Ising chain, in particular the internal and total energy,
and entropy. All these quantities are non-additive, i.e. they do not scale as the fragment
length L. We obtain analytical results for the two limiting cases of low and high temperatures
respectively.

2. Magnetic properties of the Ising chain

First, we find a one-sided conditional probability function of an N-step Markov chain,
equation (2), that is statistically equivalent to the Ising chain with Hamiltonian (1). Then we
use this property to find the magnetization of the Ising chain for the case of weak interactions
(compared to the temperature). Finally, we study another limiting case of strong interactions.

2.1. Equivalence of Markov and Ising chains

The conditional probability of a spin to have a definite value, say 1, given that the values of
all other spins in the chain are fixed, is independent of the values of the spins separated by
distances larger than N (see, e.g., [24, 25]) and reads as

P
(
si = 1

∣∣T −
i,∞, T +

i,∞
) = P

(
si = 1

∣∣T −
i,N , T +

i,N

)
. (3)

Here, T +
i,L is the L-tuple, (si+1, si+2, . . . , si+L). The probability function in equation (3) is given

by the Gibbs formula, and for the Hamiltonian (1) it has the following form:

P
(
si = 1

∣∣T −
i,N , T +

i,N

) =
(

1 + exp

(
−2H

T
−

N∑
r=1

2ε(r)

T
(si−r + si+r )

))−1

. (4)

Expression (4) for the two-sided conditional probability function can be derived by the
method proposed in section 3. It can be shown that the Metropolis scheme [27] also yields the
same expression (4) for the conditional probability.

Apostolov et al [26] analytically proved that the chain defined by a two-sided conditional
probability function (3) is equivalent to the N-step Markov chain defined by equation (2).
The relation between the two-sided and one-sided Markov conditional probability functions
reads as

P
(
si = s

∣∣T −
i,N , T +

i,N

) =
∏N

r=0
si=1

P
(
si+r

∣∣T −
i+r,N

)
∏N

r=0
si=1

P
(
si+r

∣∣T −
i+r,N

)
+

∏N
r=0

si=−1
P

(
si+r

∣∣T −
i+r,N

) . (5)
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Unfortunately, this relation is quite cumbersome and can hardly be applied to the analytical
study of Ising chains in the general case. Nevertheless, it allows one to calculate numerically
the one-sided conditional probability function for the N-step Markov chain. Thus, to attain
an equilibrium state of the spin chain, we can generate the Markov chain according to the
algorithm described in section 1, instead of using the Metropolis scheme.

2.2. Magnetization of the Ising chain with weak interaction

In order to use equations (4) and (5) for the analytical study of Ising chains, we consider the
case of weak interaction compared to the temperature:

N∑
r=1

ε(r) � T . (6)

Expanding equation (4) over the small parameter
∑N

r=1 ε(r)/T and using equation (5), we
obtain the one-sided conditional probability function. In the first approximation, it takes the
additive form

P
(
si = 1

∣∣T −
i,∞

) = 1 + s̄

2
+

N∑
r=1

F(r)(si−r − s̄). (7)

Here, functions F(r) and s̄ (the average value of si) are determined as follows:

F(r) = ε(r)

2T
cosh−2 H

T
, s̄ =

(
1 + 4

N∑
r=1

F(r)

)
tanh

H

T
. (8)

A Markov chain with an additive conditional probability function, equation (7), is referred to
as the additive Markov chain. The function F(r) is referred to as the memory function [7].
Equation (8) reflects the obvious fact that an increase of the temperature leads to an increase
of disorder and a decrease of correlations in the chain. It should be noted that the interaction
range N in equations (7) and (8) can be taken as ∞, if the series

∑
r |F(r)| converges and the

value of P in equation (7) satisfies the inequality 0 < P
(
si = 1

∣∣T −
i,∞

)
< 1.

Thus, the Ising chain in the equilibrium is equivalent to the additive Markov chain. For
the case of weak interaction between the spins, the corresponding memory function F(r) is
proportional to the energy ε(r). The memory function of the additive Markov chain is related
to its pair correlation function K(r):

K(r) = sisi+r − s̄2, (9)

by the recurrence equation [28]

K(r) =
N∑

r ′=1

2F(r ′)K(r − r ′), r = 1, 2, . . . . (10)

The overline · · · in equation (9) denotes statistical averaging. In the limiting case of small
F(r), equation (10) approximately yields

K(r) ≈ 2F(r), r = 1, . . . , N. (11)

4
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2.2.1. Fluctuations of magnetization in the absence of the magnetic field. We now consider
an Ising chain with weak but long-range interaction in the absence of the magnetic field. As
mentioned above, the averaged magnetization equals to zero in this case. However, the RMS
value of the magnetization of a chain segment with length L,

MRMS(L) =
(
(si+1 + si+2 + . . . + si+L)2

)1/2
, (12)

is not zero and is determined by the correlation function of the chain:

MRMS(L) =
(

L + 2
L−1∑
r=1

(L − r)K(r)

)1/2

. (13)

Using equations (8) and (11), we derive a relation between the RMS of magnetization and
the interaction energy:

MRMS(L) =
√

L +
1

T
√

L

L−1∑
i=1

(L − i)ε(i). (14)

Here, we used that ε(r) = 0 for r > N ; thus, the range N of interaction does not appear
explicitly.

The interaction between spins leads to the deviation of the RMS of magnetization from
the value

√
L occurring in the non-interacting chain. If this deviation is small, as we assume

here, the distribution function of magnetization is close to the Gaussian form with the variance
M2

RMS(L).

2.2.2. Magnetization in the external magnetic field. If the magnetic field H is applied, the
averaged value μ of magnetization (per spin) is no longer zero. In the assumption of weak
interactions, equation (6), μ is equal to the averaged value of spin s̄, equation (8),

μ = s̄ =
(

1 +
2

T
cosh−2 H

T

N∑
r=1

ε(r)

)
tanh

H

T
. (15)

In the nearest-neighbor approximation (N = 1), this equation coincides with the high-
temperature asymptotics of the well-known expression for the magnetization:

μ = sign H

(
1 +

exp(−4ε/T )

sinh2(H/T )

)−1/2

. (16)

Here, ε = ε(1) is the single exchange integral for the nearest neighbors.
The results of numerical simulations for the Ising chain with weak interaction are given in

the left panel of figure 1. Here, we present the dependence of the magnetization on the value
of the magnetic field. The inset shows the dependence of the RMS of the magnetization on the
segment length L in the absence of the magnetic field. The numerical points are very close to
the corresponding analytical curves (solid lines) determined by equations (14) and (15).

2.3. Magnetic properties of the Ising chain in the low-temperature limit

In the previous subsection, we have used the statistical equivalence of the Markov and Ising
chains for the calculation of the magnetization in the case of high temperatures. Here we
examine the opposite limiting case of low temperatures. The corresponding inequality imposed
on the temperature T, the interaction-energy function ε(r) and the magnetic field H will be
given below (see equation (19)). In this case, equation (4) defines a non-additive Markov
chain (see [26] for details). Since finding the correlation function for such chains brings about
considerable technical difficulties, we examine the required statistical properties of the Ising
chain directly from equation (4).

5
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Figure 1. The magnetization μ of the chain per spin versus the magnetic field H. Left panel
(T = 10): solid and dashed curves correspond to the high-temperature, equation (15), and low-
temperature, equation (22), limits, respectively. Right panel (T = 0.6): solid curve corresponds to
the low-temperature, equation (22), limit. The RMS magnetization in the absence of the magnetic
field versus length L of a segment is presented in the insets. The dots correspond to the results of
the numerical simulations. The function ε(r) is step-like, ε(r) = 1/100 for r = 1, 2, . . . , 100 and
ε(r) = 0 for r > 100.

2.3.1. Statistical properties of a strongly correlated Ising spin chain. In the case of low
temperatures, the conditional probability determined by equation (4) is close to either 0 or 1.
Indeed, due to strong correlations, the chain consists of large domains predominantly occupied
by the same symbols. It is evident that, once a strong enough magnetic field is applied, the
chain will mostly consist of the same symbols.

For definiteness, we consider the case when almost all the symbols in a chain are 1 (the
case of H > 0). In other words, the probability of finding the spin −1 at a given place of the
chain is small. For further convenience, it is suitable to introduce the parameter δ:

δ = exp(−4ε1/T ) � 1, ε1 =
N∑

r=1

ε(r) + H/2. (17)

According to equation (4), this parameter is a ratio of the probability of finding the (2N + 1)-
tuple with only one spin −1 in the center to the probability of the (2N + 1)-tuple with all spins
1 occurring. Due to the correlations, the probability of having the (2N + 1)-tuple with one
more spin −1 at distance k from the central spin −1 differs from δ2 and is equal to δ2σk with

σk = exp(4ε(k)/T ) � 1. (18)

Further, due to equation (4), three spins −1 (at successive distances k and l) occur even less
frequently, with the probability δ3σkσlσl+k . The corresponding probabilities for four and more
spins −1 can be found in a similar way.

We use the following assumptions for the parameters of the system:

δσ1

N∑
l=1

σ 2
l � (1 + exp(−2H/T ))−2N. (19)

This inequality states that the probabilities of having a (2N + 1)-tuple with three or more spins
−1 is negligible compared to those with just two spins −1. Inequality (19) holds only for

6
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the case of monotonically decreasing functions ε(r). In a general case, we should replace
σ1

∑
σ 2

l in equation (19) by the maximum value of σk

∑
σlσl+k .

Inequality (19) can be considerably simplified under some suppositions. For example, if
the function ε(r) rapidly decreases (ε(1) � ε(2) � · · ·) and H > 4ε(1), we obtain

T � H − 4ε(1). (20)

For chains with an approximately step-like function ε(r) (ε(r) ≈ ε(1) for r � N and ε(r) = 0
for r > N), we have

T � Nε(1) + H/ ln N. (21)

Thus, equation (19) means that temperature T should be sufficiently small compared with H
or ε(i).

It should be noted that inequalities (19) and (6) can be satisfied simultaneously. This is
the case when

∑
ε(r) � T � H/N . Then, the results of subsection 2.2 coincide with those

of this subsection (equation (15) transforms to equation (22)).

2.3.2. Magnetization of the Ising chain. Using equations (4), (17) and (18), we derive the
average magnetization μ per spin in the presence of the magnetic field H > 0:

μ = s̄ = 1 − 2δ + 2δ2 − 4δ2
N∑

k=1

(σk − 1). (22)

For strong enough magnetic fields, exp(−H/T ) � 1, this expression is also valid in the
high-temperature limit (6). Moreover, for chains with nearest-neighbor interaction (N = 1),
it coincides with the general formula (16) in the main and first approximations with respect to
the parameter exp(−(H − 4ε)/T ) � 1.

If the magnetic field is not applied, the averaged magnetization is equal to zero. However,
the RMS of the magnetization, determined by the pair correlation function K(r), is non-zero.
In the case of low temperatures, K(r) is close to 1. For r � N ,

K(r) ≈ 1 − 4δ. (23)

Therefore, the RMS of the magnetization of segments with length L � L0 is equal to L in
the main approximation with respect to δ, in contrast to the square-root dependence

√
L valid

in the high-temperature limit. Here L0 � N/δ is the characteristic length of the domains
consisting of the same symbols, 1 or −1. Using equations (13) and (23), we obtain

MRMS(L) = L − 2(L − 1)δ. (24)

The results of a numerical study of strongly correlated chains are shown in figure 1. As
in the case of weak interaction, we present calculations of the RMS of the magnetization for
the segment of length L in the absence of the magnetic field (the inset in the right panel) and
the averaged magnetization as a function of the magnetic field H (solid curve in the left panel
and dashed curve in the right panel). All the results of numerical simulations are close to
the theoretical predictions. As mentioned above, two asymptotics equations (15) and (22)
coincide for the strong enough magnetic fields at

∑
ε(r) � T . This is clearly seen in the left

panel.
Thus, we have studied the magnetization and its RMS for the Ising chains in the two

limiting cases of high and low temperatures respectively. These quantities are determined by
the statistical properties of the chains, particularly by the correlation function. Not only the
magnetization, but all the other statistical properties of the Ising chain can be studied using the
equivalence of the Ising and Markov chains (see [21]). In the following section, we propose
a general way of calculating the statistical quantities of the Ising chains with long-range spin
interaction.

7
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3. Total and internal energy and entropy of Ising chain segments

Here we present an approach to calculating any statistical quantity (energy, entropy, etc) for
a subsystem of arbitrary length L (a segment of L sequential spins in the Ising chain). This
mesoscopical subsystem, denoted by M, interacts with the thermostat and with the rest of the
chain. We also denote two ‘border’ subsystems of length N by B. All the other spins, except
for M and B, are denoted by R:

· · · si−N︸ ︷︷ ︸
R

si−N+1 · · · si︸ ︷︷ ︸
B

si+1 · · · si+L︸ ︷︷ ︸
M

si+L+1 · · · si+L+N︸ ︷︷ ︸
B

si+L+N+1 · · ·︸ ︷︷ ︸
R

.

The total energy of the chain is not equal to the sum of the internal energies of subsystems
M and (B + R). So, the long-range interaction between M and (B + R) makes it impossible to
use directly the standard methods of statistical physics for calculating the statistical quantities
for segment M.

In order to find the condition of equilibrium, we introduce the statistical ensemble of the
chains. We choose the subensemble of chains with fixed border regions B (but with varying M
and R). For each of 22N such subensembles, subsystem B plays the role of a separating wall.
If the ensemble is in an equilibrium state, the total energy of (M + R) (that includes the sum
of internal energies of M and R, and energy of their interaction with B) is constant for every
subensemble. Thus, we can use the equilibrium condition between M and R:

∂ ln WM(EM |B)

∂EM

= ∂ ln WR(ER|B)

∂ER

= 1

T
, (25)

where WM(EM |B) and WR(ER|B) are the statistical weights of subsystems M and R with
total energies EM and ER , respectively, with borders B fixed. We refer to statistical weights
WM(EM |B) and WR(ER|B) as the conditional statistical weights. It should be emphasized that
these weights are not mesoscopical quantities because of their dependence on the microscopic
states of borders B. If the system is in a thermal contact with the Gibbsian thermostat, the
condition of equilibrium between the thermostat and segment M sets the temperature of M
equal to T. This temperature is obviously the same for every subensemble with fixed B. Thus,
the averaged temperature of subsystem M is also T.

Note that the external thermostat is not necessary for establishing the temperature T of
the mesoscopical segment M. The role of a thermostat can be played by the subsystem R.
Indeed, the temperature determined by equation (25) does not depend on the values of spins
in B (because the statistics of an infinite subsystem R cannot depend on the microstate of a
finite subsystem B). This means that, for all the subensembles, the temperature of M is the
same even in the absence of the external thermostat. In this case, the temperature in the chain
is determined by its initial state (that can be a nonequilibrium one).

It is very important that the distribution function of segment M over different microstates
within a subensemble with fixed borders B is Gibbsian (though segment M itself is not a
Gibbsian system). Therefore, within every subensemble, we can introduce a conditional
statistical quantity QM(|B) for segment M. The actual quantity QM is the conditional one,
averaged over the subensembles with different borders B:

QM = 〈QM(|B)〉B. (26)

With this method for calculating the statistical quantities, we do not need to find the
distribution function for segment M over different microstates in the whole ensemble. Also
note that equation (26) can be considered in the thermodynamical limit L → ∞. However,
we focus our attention on the mesoscopical segments M with finite length L.

8
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The conditional entropy can be introduced as a logarithm of the conditional statistical
weight: SM(EM |B) = ln WM(EM |B). Equality dSM(EM |B) = dEM(T |B)/T is fulfilled for
the conditional quantities SM(|B) and EM(|B). Meanwhile, such a relation is not valid for the
averaged entropy SM(EM) = 〈

SM(EM |B)
〉
B

and total energy EM(T ) = 〈EM(T |B)〉B .
Note that the method presented for calculating the statistical quantities is rather general and

can be applied, e.g., to the internal energy of a segment M that can be measured experimentally,
or to the probability for some spin to take on the definite value under the condition of fixed
environment. Considering one spin si as a subsystem M and the conditional probability P as
a quantity Q in the above-mentioned method, one arrives at equation (4).

Now we apply our approach to the calculation of the total and internal energy and entropy
of the segments of length L for the limiting cases of high and low temperatures.

3.1. High-temperature limit

The total energy of a segment M with length L for prescribed configuration of M and B is
expressed via products of pairs of spins:

E(L|M,B) = −H

i+L∑
j=i+1

sj −
i+L∑

j=i+1

j+N∑
k=j−N

k �=j

ε(|k − j |)sksj +
i+L∑

j,k=i+1
j<k

ε(k − j)sksj . (27)

The actual total energy is the conditional energy averaged over the different configurations
of M and B,E(L, T ) = E(L|M,B). Along with the total energy E(L, T ), segment M can
be characterized by its internal energy Ein(L, T ) = Ein(L|M,B) specifying the interaction
between the spins in M only:

Ein(L|M,B) = −H

i+L∑
j=i+1

sj −
i+L∑

j,k=i+1
j<k

ε(k − j)sksj . (28)

This quantity can be measured experimentally and is thus of interest for study.
The second term in equation (27) accounts for the interaction of each spin of segment

M with 2N surrounding spins. The internal interaction energy is accounted for twice in this
term. Thus, the third term in equation (27) subtracts the corresponding extra summands.

In the high-temperature limit, the total and internal energy can be calculated via the pair
correlation function K(r) with r � N , without the need for the conditional energies. Using
equations (8) and (11), we arrive at

E(L, T ) = −
(

ε2L −
L−1∑
r=1

(L − r)ε2(r)

)/
T , (29)

Ein(L, T ) = −
(

L−1∑
r=1

(L − r)ε2(r) + H 2L

)/
T , (30)

with

ε2 = 2
N∑

r=1

ε2(r) + H 2, H � T . (31)

If the segment length L is much greater than the memory length N, then this expression yields
additive energies, E(L, T ) ∝ L. For the opposite limiting case, L � N , we get

E(L, T ) ≈ −ε2L/T + ε2(1)L2/2T , Ein(L, T ) ≈ −ε2(1)L2/2T − H 2L/T . (32)

Here, we suppose that ε(i) ≈ ε(1) for i � L.
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Figure 2. The dependences of specific non-additive energy E(L)/L and Ein(L)/L on the length L
of a segment for the step-like function ε(r) = 1/100, r � 100. The specific non-additive entropy
S(L)/L versus length L is presented in the inset. Other parameters are T = 10,H = 0.1.

The non-additive energy is expressed in terms of the pair correlation function only. This
is not correct for other statistical quantities, e.g. the entropy of segment M. Formally, in
order to find the entropy, one should calculate all the conditional entropies by integrating
the equation dS(L, T |B) = dE(L, T |B)/T and averaging the result over all realizations of
borders B. However, at high temperatures, to a first order in the small parameter ε1/T , we
can change the order of these operations and calculate the averaged entropy by integrating
the formula dS(L, T ) = dE(L, T )/T written for the averaged energy. A constant of
integration is determined from the condition of complete randomization at high temperatures,
S(L, T → ∞) → ln(2L). Thus, we obtain

S(L, T ) = L ln 2 + E(L, T )/2T (33)

with E(L, T ) being given by equation (29).
Expressions (29)–(33) describe the non-additive dependence of the energy and entropy of

a segment M on its length L. Note that the energy is non-additive in the main approximation in
the parameter ε1/T , while the non-additivity of the entropy appears in the first-order correction
only. The dependences of the non-additive energy and entropy on L are presented in figure 2
for the step-like function ε(r).

By knowing the energy and entropy, we can find some other statistical quantities. For
example, at high temperatures the heat capacity can be determined in a similar way as for
the entropy. One can use the classical formula C(L, T ) = T dS(L, T )/dT with the averaged
entropy being given in equation (33) and obtain the equation

C(L, T ) = −E(L, T )/T =
(

ε2L −
L−1∑
r=1

(L − r)ε2(r)

)/
T 2. (34)

This formula is valid for the case of high temperatures in the main approximation only. In
the general case, C(L, T ) is not determined by equation C(L, T ) = T dS(L, T )/dT . This
relation holds for the conditional quantities only.

For the case of high temperatures, we calculated the averaged non-additive energy and
entropy without using the conditional ones. In the opposite limiting case of low temperatures,
it is necessary to calculate the conditional quantities as well.
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3.2. Low-temperature limit

In this subsection, we assume that the inequality equation (19) is fulfilled. Let us find the
averaged values of the total and internal energy and entropy of a segment M consisting of L
spins. These are close to their minimal values taken at T = 0 when all spins in segment M
(as well as in borders B) are oriented along the magnetic field H. For positive magnetic fields,
H > 0, we have

Emin(L) = −(ε1 + H/2)L −
N∑

r=1

rε(r), Ein
min(L) = −(ε1 + H/2)L +

N∑
r=1

rε(r). (35)

For simplicity, we consider here and below the segments with L � N .
According to the Nernst theorem, the entropy in the zeroth approximation is S(L, T =

0) = 0. Now we seek the first non-additive corrections to E,Ein and S. Following the proposed
approach, we have to find, as a first step, the conditional total energy and entropy for all the
configurations of borders B.

(i) The most probable configuration of borders B is B0 when they consist of spins +1 only. The
corresponding probability P(B0) is approximately equal to 1 − 2Nδ. The conditional
total energy and entropy for this case can be found by virtue of equations (17), (18)
and (27):

E(L, T |B0) = Emin(L) + 4δε1L(1 − Lδ) + δ2
L∑

k=1

(8ε1 − 4ε(k))(L − k)σk,

S(L, T |B0) =
∫ T

0

1

T
dE(L, T |B0)

(36)

= δL
4ε1 + T

T
− δ2L2 8ε1 + T

2T
+ δ2

L∑
k=1

8ε1 − 4ε(k) + T

T
(L − k)σk. (37)

(ii) Much less probable configuration of the borders is B1,k with only one symbol −1 at
distance k from the edge of segment M. The corresponding probability does not depend
on k and is approximately equal to δ, P (B1,k) ≈ δ. For this configuration, the conditional
total energy and entropy are

E(L, T |B1,k) = Emin(L) + 2
L∑

j=1

ε(k + j − 1) + δ

L∑
j=1

(4ε1 − 4ε(k + j − 1))σk+j−1,

S(L, T |B1,k) =
∫ T

0

1

T
dE(L, T |B1,k) = δ

L∑
j=1

4ε1 − 4ε(k + j − 1) + T

T
σk+j−1.

(38)

(iii) Probabilities of all other configurations of the borders are negligible with respect to
P(B1,k). There is no need to find the corresponding conditional energies and entropies if
we are interested in the first non-additive corrections to these quantities.

Averaging the conditional quantities over border configurations B0 and B1,k and keeping
the non-additive temperature-dependent terms in the main approximations in δ, we derive the
actual quantities E(L, T ) and S(L, T ):

E(L, T ) = Emin(L) + 4δ

(
ε1L +

N∑
r=1

rε(r)

)
, (39)

11
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Figure 3. The specific non-additive energies E, Ein and entropy S versus the length L of a segment
for a step-like function ε(r) = 1/20, r � 20. Symbol � denotes the non-additive terms in
equations (39), (41) and (42). Other parameters are T = 3 and H = 6.

S(L, T ) = Lδ

[
4ε1

T
(1 − 2δ) + 1 + δ

4H − T

2T
+ δ

N∑
k=1

8ε1 − 4ε(k) + T

T
(σk − 1)

]
(40)

+ δ2

[
N∑

k=1

k(σk − 1) − 4

T

N∑
k=1

kε(k)σk

]
. (41)

Similar calculations for the internal energy give the following expression:

Ein
M(L, T ) = Ein

min(L) + 4δ

(
ε1L −

N∑
r=1

rε(r)

)
. (42)

One can see that the non-additive total energy and entropy, determined by
equations (39) and (41), do not satisfy the relation dE(L, T ) = T dS(L, T ), unlike the
conditional total energy and entropy. The dependences of the non-additive energy and entropy
on L are presented in figure 3 for a step-like function ε(r).

As mentioned above, in the absence of an external thermostat, the temperature T of a chain
is controlled by its initial state. In this case, the temperature can be expressed via the total
energy of the chain. In particular, the positive initial energy of the chain provides negative
temperature (see figure 4). If the initial energy is close to its maximum, the temperature is
negative and close to zero and the system is almost ‘frozen’. The lesser the positive energy,
the lower the negative temperature. If the initial energy tends to zero, the chain becomes more
chaotic and its temperature tends to minus infinity.

The situation is principally different for the chains in contact with an external thermostat.
The states of chain with negative temperatures become unstable and, therefore, do not exist. If
the initial energy of the chain is negative and close to zero, the temperature is positive and high.
At the same time, it tends to zero for the energy close to its minimum. Both with and without
the external thermostat, all the statistical properties of the chain with positive temperature are
the same.
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Figure 4. The dependence of the entropy S on the total energy E for the step-like function
ε(r) = 1/20, r � 20. The magnetic field H = 100 is so strong that the high-temperature (red
dashed curve), equations (29), (33), and low-temperature (blue solid curve), equations (39), (41),
asymptotes coincide. The corresponding values of the temperature are shown on the right scale.

4. Conclusion

Thus, we have studied the statistical properties of mesoscopic segments of Ising spin chains
with finite but arbitrary long interaction ranges. The equivalence of the Ising and N-step
Markov chains was used for calculating the averaged statistical quantities. In particular, the
averaged magnetization in the presence of the external magnetic field and its RMS were
calculated in the two limiting cases of strong and weak interactions. Correlations in the chain
result in the non-additive behavior of these quantities as the segment length L increases. We
show that the statistical quantities of the chain can be obtained by averaging the corresponding
conditional quantities. The explicit expressions for the non-additive energy, internal energy
and entropy are derived in the limiting cases of high and low temperatures compared to the
energy of spin interaction. At high temperatures, the equilibrium Ising chain of spin turns out
to be equivalent to the additive multi-step Markov chain.
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